Discrete Homotopy on Graphs and Clique Graphs

Importing the concept from topology, we can define two (reflexive) morphisms of graphs $f, g: X \to Y$ to be homotopic $(f \simeq g)$ if there is a graph morphism $H: X \boxtimes P_n \to Y$ with H(x, 1) = f(x) and H(x, n) = g(x) (here P_n is the path graph on n vertices). This discrete homotopy of graph morphisms share many formal properties with the homotopy of continuous maps on topological spaces. In particular, \simeq is a congruence relation on the category of graphs \mathcal{G} , so we can construct the quotient category \mathcal{G}/\simeq . These ideas have been studied before by Babson, Dochterman, Kozlov and Lovàsz.

The clique operator K, transforms a graph X into the intersection graph of all its (maximal) cliques K(X). Many papers have been published regarding clique behavior, i.e.: given a graph X, determine whether it K-converges $(K^n(X) \cong K^m(X)$ for some n < m) or K-diverges $(\lim_{n\to\infty} |K^n(X)| = \infty)$. Here we note that whereas K is not a functor on \mathcal{G} , it is indeed a functor on \mathcal{G}/\simeq . This fact, gives new insight into the problem of clique behavior and a new vast panorama emerges with new theorems, new open problems, new divergence techniques, and a unifying approach to several existing divergence techniques.

Let us see a concrete example. Given a morphism $f: X \to Y$, we define its norm as $||f|| = \min_{f' \simeq f} |\operatorname{Im}(f')|$ and we say that f is *unbounded* if the set $\{||K^n(f)|| \mid n \in \mathbb{N}\}$ is unbounded. It follows that whenever f is unbounded, both X and Y are K-divergent, and whenever f factorizes in \mathcal{G}/\simeq , i.e. $f \simeq hg$ for some $g: X \to Z$ and $h: Z \to Y$, the morphisms g and h are also unbounded and hence Z is also K-divergent. When X and Y are K-divergent in \mathcal{G}/\simeq , the *retractions* and the *triangular covering maps* are previously studied divergence techniques that become particular cases of unbounded morphisms.